Progression in Calculation

 Multiplication and Division
Progression in Calculation

 Multiplication and Division Year REach day Jack's beanstalk doubled in height. It was twice as tall. Today it is 3 bricks tall. How tall will it be tomorrow?

Cut the food in half to share with a friend.

3 friends wanted to share the last 6 apples. To make it fair they need the same amount each.

Progression in Calculation

 Multiplication and Division Year 1 and 2
Counting and Place Value

Year 1

Count in multiples of two, five and ten.

Year 2

Count in steps of 2, 3, 5 from 0 and in tens from any number forwards and backwards

Year 2

Recall and use multiplication tables and division facts for the 2,5 and 10 multiplication tables.

$$
3 \times 5=15
$$

How many $3 s$ in 15 ?
How many groups of 3 in 15 ?

$$
3 \times \square=15
$$

Year 3

Count in zero from multiples of 4, 8,50, 100 and find 100 more or less than a given num-
 if I add/subtract another 100?

Using objects and pictorial representations alongside concrete resources

If I have 6 socks. How many pairs will that make?

Year 1

Solve one step problems involving multiplication and division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Year 2

Solve problems using multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts.

$$
15 \text { frogs } \div 3 \text { lilly pads }=\square \text { Frogs on each }
$$

5 frogs on each lily pad
$5 \times 3=15$

Repeated Addition

There are 15 frogs. There are the same amount on each Lilly pad. If there are 3 Lilly pads, how many are sat on each one?

3 people will fit in a carriage. How many carriages will I need to carry 6 people?

Year 1

Solve one step problems involving multiplication and division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

5 chocolates will fit in a box. How many boxes will I need for 15 chocolates?

What if I had 16 chocolates...how many boxes would I need then?

Year 2
Solve problems using multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts.

Year 1

4 Cheerios in one bowl, how many in 5 bowls?

$$
4+4+4+4+4=20
$$

$4 \times 5=20$
If 5 friends wanted to share $\mathbf{2 0}$ Cheerios, how many would they each have? $\mathbf{2 0}$ Cheerios $\div 5$ people $=\mathbf{4}$ Cheerios each

Year 2

Solve problems using multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts.

Progression in Calculation

 Multiplication and Division Year 3 and 4
Counting and place value

Year 3

- Count in zero in multiples of $4,8,50,100 \ldots$

Show number lines in many orientations and count in multiples.
$50 \mathrm{ml}, 100 \mathrm{ml}, 150 \mathrm{ml}$.
50p, £1, £1.50, £2
Or 50p, 100p, 150p, 200p
Count in different contexts using the language associated with the context

Ordering and comparing numbers
What numbers could lie between these two
values?
Which number is halfway between ... and ...?

Year 3 (Fractions)

Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one digit numbers or quantities by 10.

Year 4 (Fractions)

- Count up or down in hundredths; recognise hundredths arise when dividing an object by one hundred and dividing tenths by ten.

Complete: Developing Reasoning and Application to other domains

$6 \times 2=$
Year 3
$6 \times 10=$

- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit times one-digit numbers, using mental methods and progressing to formal written methods

Children need a good grasp of using multiplication and division facts to allow them to use informal jottings to solve simple calculations mentally using recall of known facts.

Year 3 (Statistics)

Solve one and two step problems using information presented in scaled bar charts and pictograms
Non- Statutory
Pupils use simple scales e.g. 2, 5, 10 units per $\mathbf{c m}$.

Year 3 Non- Statutory
Pupils develop efficient methods, for example, using commutativity and associativity.
How many more people preferred banana to apple?
How many people had a snack altogether?

Count in 5's to help you

How many more people prefer cats to dogs?

$$
5-2=3
$$

Favourite Pets		
Cat	$\%$	
Dog	$\%$	
Hamster	$\%$	

Moving towards formal written methods of multiplication and division

Ref: ITP: multiplication facts

```
25
\(40 \times 4=160\)
```

$\times 4$
$20(5 \times 4)$
$8 \quad 0(20 \times 4)$
100

Linking arrays and grid method

Division
$42 \times 4=168$

Ref: NCETM
14

Exchange or regroup the ten that cannot be grouped into 3s.
For video model see: https://www.ncetm.org.uk/resources/43589
Multiply 2 digit and 3 digit numbers by a one digit number using formal written layout. (see appendices of National Curriculum)

Progression in Calculation

 Multiplication and Division Year 5 and 6
Developing written methods of multiplication and division

Division using decimals

Children need a good grasp of exchanging or regrouping where $0.1 \times 10=1$ and $0.01 \times 10=0.1$

regroup 2 into tenths

Group into 8

0.4 to regroup into 0.1 hundredths

Group into 8s (as the divisor)
(Fractions)
Use written division methods in cases where the answer has up to two decimal places.

True or false? Prove it.
How do you know?
Show using a model.
$0.2 \times 5=0.5 \times 2$
$0.2 \times 4+0.2=0.2 \times 5$

Statutory Guidance- Formal Written Methods
Short multiplication

24×6 becomes			
$\mathbf{2}$	$\mathbf{4}$		
\times	$\mathbf{6}$		
$\mathbf{1}$	$\mathbf{4}$		
2		\quad	342×7 becomes
:---:			

Answer: 2394

Long multiplication

24×16 becomes
2
24

\times	1
2	4

1	4	4
3	8	4

Answer: 384
124×26 becomes

	1	2	
	1	2	4
\times		2	6
$\mathbf{2}$	$\mathbf{4}$	8	0
	7	4	4
$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	4
1	1		
Answer: 3224			

$$
\begin{aligned}
& 2741 \times 6 \text { becomes } \\
& \begin{array}{llll}
2 & 7 & 4 & 1
\end{array} \\
& \begin{array}{ccccc}
\times & & & & 6 \\
\hline 1 & 6 & 4 & 4 & 6 \\
\hline & 4 & 2 & &
\end{array}
\end{aligned}
$$

Answer: 16446

\[

\]

Statutory Guidance- Formal Written Methods

Short division

$98 \div 7$ becomes

$$
\begin{gathered}
1 \\
7 \\
\hline 9
\end{gathered}
$$

Answer: 14

$$
432 \div 5 \text { becomes }
$$

Answer: 86 remainder 2

$496 \div 11$ becomes

Answer: $45 \frac{1}{11}$

Long division

$432 \div 15$ becomes

$$
\begin{array}{cr|rrr}
& & & 2 & 8 \\
& 5 & \mathbf{4} & 3 & 2 \\
& & \\
& & 3 & 0 & 0 \\
& & 1 & 3 & 2 \\
& & 1 & 2 & 0 \\
\hline
\end{array}
$$

Answer: 28 remainder 12
$432 \div 15$ becomes

$$
\frac{12}{15}=\frac{4}{5}
$$

Answer: $28 \frac{4}{5}$
$432 \div 15$ becomes

Answer: 28.8

Factors, Primes, Square and Cube Numbers and application to other domains

Use the counters to find factors of 12 by making arrays. What others can you find? How many arrays can you make with 13 counters?

See Fractions, decimals, percentages and ratio and proportion booklet also.

Year 4
Recognise and use factor pairs in mental calculation.

Year 5

Identify multiples and factors, including finding all factor pairs of a number and common factors of 2 numbers.

Now compare finding the factors of 15.

Year 5

Recognise and use square numbers and cube numbers, and use the notation for squared ${ }^{(2)}$ and cubed ${ }^{(3)}$

The volume of the box is $150 \mathrm{~cm}^{3}$.
What could the dimensions be? Investigate.

The number in the blue box is the same.

What could it be?

Year 6 Ratio and Proportion

Solve problems using the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts.

So 2 miles $=3.2 \mathrm{~km}$

1 mile $=1.6 \mathrm{~km}$

Year 6 (Measures) See Year 5 objectives also

Convert between miles and km.
Solve problems involving the calculation and conversion of units of measure, using decimals notation up to 3 decimal places where appropriate.

